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C O N S P E C T U S

This Account provides an overview of the methods that are
currently being used to study the electromagnetics of silver

and gold nanoparticles, with an emphasis on the determina-
tion of extinction and surface-enhanced Raman scattering (SERS)
spectra. These methods have proven to be immensely useful in
recent years for interpreting a wide range of nanoscience exper-
iments and providing the capability to describe optical proper-
ties of particles up to several hundred nanometers in dimension,
including arbitrary particle structures and complex dielectric envi-
ronments (adsorbed layers of molecules, nearby metal films, and
other particles). While some of the methods date back to Mie’s
celebrated work a century ago, others are still at the forefront
of algorithm development in computational electromagnetics.

This Account gives a qualitative description of the phys-
ical and mathematical basis behind the most commonly used
methods, including both analytical and numerical methods, as
well as representative results of applications that are rele-
vant to current experiments. The analytical methods that we
discuss are either derived from Mie theory for spheres or from the quasistatic (Gans) model as applied to spheres and sphe-
roids. In this discussion, we describe the use of Mie theory to determine electromagnetic contributions to SERS enhance-
ments that include for retarded dipole emission effects, and the use of the quasistatic approximation for spheroidal particles
interacting with dye adsorbate layers. The numerical methods include the discrete dipole approximation (DDA), the finite
difference time domain (FDTD) method, and the finite element method (FEM) based on Whitney forms. We discuss appli-
cations such as using DDA to describe the interaction of two gold disks to define electromagnetic hot spots, FDTD for light
interacting with metal wires that go from particle-like plasmonic response to the film-like transmission as wire dimension
is varied, and FEM studies of electromagnetic fields near cubic particles.

1. Introduction

Noble metal nanoparticles (or metal films) have

been of widespread interest in the past few years

as a result of advances in molecular plasmonic

devices,1 biosensing,2 and other applications.

While the most common optical measurements

refer to extinction and Rayleigh scattering, there

has also been interest in surface-enhanced Raman

scattering (SERS) and in a variety of nonlinear opti-

cal measurements. Much of this activity is con-

cerned with plasmon resonance excitation in the

nanoparticles, in which the electromagnetic field

excites collective oscillations of the conduction

electrons.3,4 Such excitations depend strongly on

nanoparticle shape, size, and dielectric environ-

ment, and as result, they can be tailored for appli-

cations at desired wavelengths through particle

synthesis. In addition, the plasmon resonance
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wavelength of a given nanostructure is extremely sensitive to

the presence of molecules near the nanostructure, so the shift

in this wavelength upon analyte binding can be used in refrac-

tive index sensors.2,5 As a result, a large number of sensing

applications have been reported,5-8 including the study of

analytes with molecular resonances in the visible wavelength

region.9,10 In addition, sensing applications using particle

aggregation11 and SERS2,12 have been reported.

Theory has long played a role in the modeling of metal

nanoparticle optical properties, and this role has significantly

increased in the last 10 years.13-19 Almost 100 years ago, it

was realized, thanks to the celebrated work of Mie20 (along

with important contributions from many others, as described

by Kerker21), that classical electromagnetic theory (i.e., solv-

ing Maxwell’s equations for light interacting with a particle)

provides a quantitative description of the extinction and scat-

tering spectra of nanoparticles. Mie’s work referred to light

scattering from a spherical particle, and thus was not able to

describe shape effects, but much of the colloid chemistry work,

which dominated the field prior to 1990, involved broad dis-

tributions of particle shape and size such that a more quanti-

tative electromagnetic description was not very useful.

However the advent of lithographic methods for making nano-

particles has changed the demands on theory for these prob-

lems, and as a result there is now interest in describing the

optical properties of nonspherical particles, particles in aniso-

tropic dielectric environments, holes in metal films and many

other complex nanostructures, such that it is useful to have

numerical approaches available for these problems.

This paper provides an overview of the methods that have

been developed to describe the optical properties of noble

metal nanoparticles, going all the way from Mie theory and

other analytical methods, to a variety of numerical methods

that can be used to describe complex nanostructures.

Although Mie theory is well-known, new applications of it con-

tinue to appear, and we will illustrate this through an

evaluation of the electromagnetic contribution to SERS

enhancements for a molecule interacting with a silver sphere.

Other particle shapes, such as spheroids, also admit to

exact solutions, but the solutions are harder to use. One of the

most useful alternatives has been the quasistatic approxima-

tion, in which Maxwell’s equations are replaced by electro-

statics (LaPlace equation) but still using frequency-dependent

dielectric functions. This Account will describe applications of

this approach to the treatment of spheroids interacting with

dye molecule adsorbates.

FIGURE 1. Extinction efficiency vs excitation wavelength (a) for Ag spheres with diameters of 10 (black), 100 (red), and 1000 nm (green) and plots
of Raman enhancement vs excitation wavelength for 10 (b), 100 (c), and 1000 nm (d). The green lines are the enhancements GVv calculated using
the multipole expansion. The red and black lines are the quasistatic enhancements 5|1 + 2g + 2g0 + 4gg0|2 and 5|1 + 2g|4.
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Numerical methods for solving Maxwell’s equations come

in many different flavors, and our presentation will cover three

of the most common methods. The discrete dipole approxi-

mation (DDA) is a frequency domain approach that approxi-

mates the induced polarization in a complex particle by the

response of a cubic grid of polarizable dipoles. The polariz-

abilities of the dipoles can be chosen so that bulk materials

will behave the same as the continuum solution to Maxwell’s

equations, but the treatment for finite particles is only approx-

imate. However the approximation is accurate enough for

many applications, and the computational simplifications

afforded by DDA over other methods are such that this

method has been very widely used. As an illustration of this,

we consider the extinction spectra and electromagnetic hot

spots formed from two interacting gold disks, each 120 nm in

height and 360 nm in diameter.

One of the simplest of the nominally exact methods is the

finite difference time domain (FDTD) method, in which a clever

finite differencing algorithm developed by Yee22 is applied to

Maxwell’s equations, using grids for the electric field E and

magnetic field H, which are shifted by half a grid spacing rel-

ative to each other. This method can be applied in both two

and three dimensions, and we provide an example where the

2D algorithm is used to study the transmission of light

through a particle array. A third type of numerical approach

is the finite element method (FEM), in which the solutions to

Maxwell’s equations are expanded in locally defined basis

functions chosen such that boundary conditions are satisfied

on the surfaces of the elements. Here we consider the

so-called Whitney form finite element approach, showing how

electromagnetic fields around a cubic particle compare with

FDTD results. Unfortunately space limitations do not allow us

to describe other numerical methods, such as the dyadic

Green’s function method, that have also played a role in this

field.

2. Analytical Models

A. Mie Theory. Mie theory in its standard presentation (a

plane electromagnetic wave interacting with a spherical par-

ticle) is described in a number of textbooks,21,23 so we will not

go into the derivation here. The most common applications of

Mie theory have been to the extinction spectra of nanopar-

ticles, where only a single result from the theory is needed,

namely, the formula for the extinction cross section:

Cext )
2π
k2 ∑

l )1

∞

(2l + 1)Re(al + bl ) (1)

where k ) 2π/λ and the coefficients al and bl are given by

(assuming that the magnetic permeabilities of the sphere and

surrounding medium are the same):

al )
m2jl(x)[xjl(x)]′ - jl(x)[mxjl(mx)]′

m2jl(mx)[xhl
(1)(x)]′ - hl

(1)(x)[mxjl(mx)]′
(2)

bl )
jl(x)[xjl(x)]′ - jl(x)[mxjl(mx)]′

jl(mx)[xhl
(1)(x)]′ - hl

(1)(x)[mxjl(mx)]′
(3)

In these expressions, “Re” denotes the real part of what fol-

lows, x ) ka with a being the sphere radius, m2 ) ε1/ε0, the

functions jl(x) and hl
(1)(x) are, respectively, the spherical Bessel

and Hankel functions, and ε1 and ε0 are the dielectric func-

tions of the nanoparticle and surrounding medium, respec-

tively. Computer codes for evaluating Cext are widely available

on the web, such as at the Nanosphere Optics Lab at nano-

hub.org.

Eqs 1-3 can easily be evaluated for particles that are 1000

nm or smaller. Figure 1a presents extinction efficiencies (the

ratio of cross section to the geometrical area πa2) for a silver

sphere in vacuum and with sphere diameters of 10, 100, and

1000 nm. The dielectric function in these calculations is from

Lynch and Hunter.24 The 10 nm results show a typical dipole

plasmon resonance at 360 nm, which red shifts and broad-

ens considerably for the larger particle sizes. In addition, larger

particles show higher multipole resonances to the blue of the

dipole resonance. The red-shifting, broadening, and multipo-

lar excitation that grows with increasing particle size is due to

depolarization and radiative damping effects that arise from

the finite size of the particle relative to the wavelength. Ulti-

mately for large enough particles (1000 nm) this washes out

plasmon resonance effects, leading to a structureless extinc-

tion spectrum in the visible.

For the 10 nm particle, the extinction cross section can be

accurately represented using the quasistatic approximation, in

which only the a1 term in eq 1 is included, and the kf 0 limit

is taken in the evaluation. This leads to an extinction cross

section of

Cext )
6π
λ

(ε0)
1⁄2V Im g (4)

where
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g )
ε1 - ε0

ε1 + 2ε0
(5)

Here V is the particle volume, and “Im g” denotes the imagi-

nary part of the function g. This expression shows that the

dipole resonance occurs when the denominator of g is mini-

mized, which means that the real part of ε1 matches -2ε0.

This is satisfied at 360 nm for a small silver sphere, and the

width of the plasmon resonance is determined by the imagi-

nary part of ε1 at that wavelength. For silver and gold, it is

possible to represent ε1 using the Drude model

ε1(ω) ) 1 -
ωp

2

ω(ω + iγ)
+ �ib(ω) (6)

where ω is the angular frequency, ωp is the bulk plasmon fre-

quency, and γ is a width factor that determines the imagi-

nary part of ε1 provided that contributions from interband

transitions contained in �ib can be ignored. Based on eqs 5

and 6, the plasmon frequency Ω is given by

Ω )
ωp

√1 + 2ε0 + Re �ib
(7)

The width factor γ includes electron-phonon and other intrin-

sic electron relaxation mechanisms but not the radiative con-

tributions to the width that were mentioned above because

these are not included in the quasistatic approximation. In

addition, for 10 nm particles, there are contributions to the

width from scattering of the conduction electrons from the par-

ticle surfaces. These lead to an inverse dependence of width

on particle size,25 but it is of minor consequence here.

While the Mie theory application above is very common,

an important but much less common application of Mie the-

ory has been to study electromagnetic field enhancements in

SERS. The theory was first developed in 1980 by Kerker,

Wang, and Chew,26 although others developed quasistatic and

phenomenological models earlier as has been reviewed.27-29

The Kerker theory considers a single molecule adsorbed onto

a metal sphere with the molecule treated as a classical point

dipole. The incident field interacts with the sphere to create an

enhanced field at the molecule, which induces an oscillating

dipole at the Stokes shifted frequency. Then the induced

dipole emits waves, which scatter from the sphere to create an

enhanced far-field SERS signal. The overall enhancement fac-

tor, G, thus involves two Mie theory applications: interaction

of the sphere with the plane wave incident field, and interac-

tion of the sphere with the dipole emitted field. The first appli-

cation requires the electric fields from a standard Mie

calculation, as are expressed in many places23,26,30 using vec-

tor spherical harmonics. The second application can also be

represented using vector spherical harmonics, as described by

Kerker.26

If one defines the scattering plane (that associated with inci-

dent and scattered wavevectors) as the xz-plane and assumes

that the exciting electric field is polarized perpendicular to this

plane, then measurements of the components of the Raman

scattered radiation whose polarization is also perpendicular to

the plane result in what Kerker terms the Vv component of G,

denoted GVv. A key result of the Kerker paper is that in the

quasistatic limit, the SERS enhancement is given by

GVv ) 5|1 + 2g|2|1 + 2g0|
2 ) 5|1 + 2g + 2g0 + 4gg0|

2

(8)

where g is given by eq 5 and g0 is the same expression eval-

uated at the Stokes shifted frequency. Equation 8 expresses

the enhancement in terms of a numerical constant “5” (which

arises from orientation averaging effects) multiplied by the

local field enhancement factors |1 + 2g|2 and |1 + 2g0|2 at

the incident and Stokes frequencies. This justifies the com-

monly used approximation that the SERS enhancement fac-

tor is the product of field enhancement factors at the incident

and Stokes shifted wavelengths, but note that it only applies

to specific molecular and field geometries in the quasistatic

limit.

It is possible to use the complete multipole expansion for

the vector fields to evaluate GVv exactly rather than using the

quasistatic approximation. Figure 1b-d presents the results for

10, 100, and 1000 nm spheres, including comparison of the

exact GVv with its quasistatic counterpart, as well as eq 7 with

the additional approximation that the Stokes shift is neglected

(giving the often cited |E|4 enhancement). Figure 1b shows that

the three expressions are similar for a 10 nm sphere. How-

ever for the 100 nm sphere, the exact expression is smaller

below 400 nm but larger at long wavelengths. For the 1000

nm sphere, the exact expression is always a factor of at least

10 smaller, due to radiative damping contributions.

B. Quasistatic Theory for a Spheroidial. For a particle

with size much smaller than the wavelength of the incident

light, the quasistatic approximation can be applied to simplify

the calculation of the absorption and scattering efficiency. In

this limit, the extinction cross section of a metallic spheroid

embedded in a homogeneous medium when the polariza-

tion of the incident light is parallel to the symmetry axis of the

spheroid is given by eq 9 (which is a generalization of eqs 4

and 5):3,20,23
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Cext ∝ 1
λ

Im{ ε1 - εm

ε1 + �εm
} (9)

where ε1 is the dielectric function of the metal, εm is the

dielectric function of the surrounding medium, and � is a

shape factor for the particle that has the value 2 for a sphere,

is <2 for an oblate spheroid, and is >2 for a prolate spher-

oid. A similar expression applies to the case where the polar-

ization is perpendicular to the symmetry axis, except that now

the � parameter is <2 for a prolate spheroid and >2 for an

oblate spheroid. This leads to two plasmon resonances, of

which the red-most of these is of most interest in applications.

In many sensing applications based on localized surface

plasmon resonance (LSPR) studies, one needs to calculate the

extinction of nanoparticles coated with a layer of molecules.

However, eq 9 considers a particle in a homogeneous envi-

ronment. To treat an inhomogeneous environment consist-

ing of a layer of molecules surrounded by a solvent, a

primitive effective medium theory can be developed wherein

the effective dielectric function of the surrounding medium is

assumed to be of the form εm,effect ) εmol · x + εm · (1 - x)

where εmol is the dielectric function of the molecule and x is

a empirical parameter (between 0 and 1), which is determined

by the relative amounts of molecules and solvent that are con-

tained within the range of the electromagnetic field around

the particle. Better effective medium theories include the

Clausius-Mossotti, Maxwell-Garnett, and Bruggemann

expressions,23 but all lead to a linear dependence on x in the

small coverage limit (x < 0.05), and this is where we will use

this expression.

Equation 9 has recently been used to model the wave-

length shift induced by resonant molecules in the extinction

of Ag nanoparticles.31 Here one evaluates this equation twice,

once for εm referring to vacuum and once with εm referring to

an effective medium composed of vacuum plus a thin layer of

resonant molecules. Haes et al. studied the LSPR wavelength

shift of Ag nanoparticles induced by a monolayer of resonant

molecules [2,3,7,8,12,13,17,18-octakis(propyl)porphyrazinato]

magnesium(II) (MgPz), which has an absorption maximum at

598 nm in ethanol solution.10 In this work, the extinction

wavelength shift induced by MgPz was calculated as a func-

tion of the plasmon resonance wavelength. The dielectric func-

tions of MgPz were taken from Haes et al. and the parameter

x in the effective medium theory was chosen as 0.01 to match

the experimental data. (In principal, x should be determined

from the fraction of the sensing volume that is occupied by

the molecular layer; however this was not determined in these

studies.) Figure 2a shows the extinction spectra of bare (solid

lines) and MgPz-coated (dashed lines) Ag spheroids calculated

using eq 9. Here the extinction wavelength of the Ag spher-

oid is varied by varying �. Each pair of spectra with the same

colors are calculated using the same �. When the extinction

maximum of the Ag spheroid is separated by more than 50

nm from the absorption peak of MgPz, the extinction maxi-

mum of the MgPz-coated Ag nanoparticle is red-shifted from

that of the bare Ag nanoparticle. In addition, there is a small

peak at ∼600 nm in the spectrum due to absorption by MgPz.

When the extinction wavelength of the Ag nanoparticle is

close to the MgPz absorption peak, a dip in the extinction

spectrum of the MgPz-coated Ag nanoparticle is found due to

MgPz absorption. This phenomenon was not observed for dye

molecules adsorbed on Ag nanoparticle arrays, probably

because of particle inhomogeneity.9,10 However, Lee and co-

workers have recently demonstrated that when resonant mol-

ecules are adsorbed to a single Au nanoparticle and the

resonant wavelength is close to a molecular resonance, a dip

is produced in the extinction line shape.32

FIGURE 2. Extinction spectra of Ag spheroid/MgPz and LSPR shift induced by MgPz: (a) Extinction spectra of bare Ag spheroid (solid lines)
and Ag spheroid with MgPz (dashed lines) with varying � parameters. Each pair of spectra of the same color was calculated with the same �.
(b) LSPR shift of Ag nanoparticles induced by MgPz versus LSPR wavelength of bare Ag nanoparticles. The black line with dots is
experimental LSPR shift data, and the red curve is the calculated LSPR shift.

Electromagnetic Properties of Ag and Au Nanoparticles Zhao et al.

1714 ACCOUNTS OF CHEMICAL RESEARCH 1710-1720 December 2008 Vol. 41, No. 12



Figure 2b shows the predicted LSPR wavelength shift (red

solid line) in comparison with the experimental data (black

solid line with dots). The figure shows that the modeling

agrees well with the experiments, confirming that this method

can be used to calculate the LSPR of metal nanoparticles

coated with a resonant molecular layer.

3. Discrete Dipole Approximation

The DDA method was originally proposed by Purcell and

Pennypacker33 for describing light scattering from grains in

the interstellar medium and then subsequently put on more

quantitative footing for these applications by Draine, Good-

man, and Flatau34 through the DDSCAT program.35 In the

last 15 years, this method has been adapted to metal nano-

particle applications as has been reviewed.18

In the DDA method, the nanoparticles are represented as

a cubic array of N polarizable elements whose polarizabili-

ties Ri (i ) 1, 2, ..., N) are determined from the nanoparticle

dielectric function. The induced dipole Pi in each element in

the presence of an applied plane wave field is Pi ) RiEloc,i

where the local field Eloc at ri is the sum of the incident and

retarded fields of the other N - 1 dipoles. For a given wave-

length λ, this field is

Eloc,i ) Einc,i + Edipole,i ) E0 exp(ik · ri) - ∑
j)1

j*i

N

Aij · Pj

where i ) 1, 2, ... , N (10)

where E0 and k ) 2π/λ are the amplitude and wave vector of

the incident wave, respectively. The dipole interaction matrix

A is

Aij · Pj ) k2 eikrij
rij × (rij × Pj)

rij
3

+ eikrij (1 - ikrij)
[rij

2Pj - 3rij(rij · Pj)]

rij
5

(i ) 1, 2, ... , N; j ) 1, 2, ... , N ; j * i) (11)

where rij is the vector from dipole i to dipole j. Once the Pi’s

are determined by solving these equations, the extinction

cross-section is determined from

Cext )
4πk
|Ebinc|2 ∑j)1

N

Im[Ebj
inc,∗ · Pbj] (12)

A disadvantage of the DDA approach is that the coupling

between dipoles is relatively long-ranged, so the interaction

matrix is a full matrix. However Draine and co-workers have

developed complex conjugate gradient methods to solve

these problems, and the dipole interactions are evaluated

using Fourier methods such that the computational effort for

even 3D calculations is generally less than that for finite dif-

FIGURE 3. DDA results for a single gold disk and for a gold disk dimer: (a) the extinction spectrum of a gold disk from DDA compared with
that from a dark field measurement; (b) the extinction spectrum of a gold disk dimer with a 12 nm separation; (c) contours of the local field
|E|2 for the z ) 0 plane for the dimer with a 12 nm separation; (d) the average |E|4 for an inner surface of the gold dimer versus distance
between the two inner surfaces.
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ferencing methods, at least for particles smaller than a few

hundred nanometers in size. As a result, the DDA method has

been widely used to describe the shape dependence of plas-

mon resonance spectra, including studies of triangular

prisms,36-38 disks,39 cubes,40 truncated tetrahedra,41 shell-

shaped particles,42,43 small clusters of particles,44 and many

others.18 Although DDA is not an exact method, comparisons

of DDA results with other methods such as Mie theory indi-

cate that errors in the extinction spectra are often less than

10%, with the overall multipole resonance mode structure

being the same.

As an example of a DDA application, we consider the

extinction and SERS enhancements associated with gold disks

fabricated using on-wire lithography, expanding on an ear-

lier study39 in which DDA results were compared with exper-

imental results. First consider a single gold disk with thickness

120 nm and diameter 360 nm. Assuming the wave vector is

along the x axis and the symmetry axis is along y direction,

the extinction spectrum from a DDA calculation is presented

in Figure 3a, along with the results of experiments. This shows

a major peak around 560 nm and a shoulder at 660 nm,

which we have assigned to dipole excitation for y polariza-

tion and quadrupole excitation for z polarization, respectively.

Both peaks are observed in the experimental measurements.

The experiments also studied dimers of the same disk struc-

ture that are aligned along the symmetry axis and separated

by a distance that can be varied from a few to many hundreds

of nanometers. Figure 3b shows the extinction spectrum of the

dimer for 12 nm separation. This shows the same two peaks

but red-shifted to 590 and 690 nm, and we also see addi-

tional resonances at longer wavelength.

Also of interest in this work is the SERS enhancement fac-

tor associated with the gold dimer and particularly the depen-

dence of this enhancement factor on the disk separation.

Figure 3c shows contours of the enhancement factor |E|2 for

the dimer with 12 nm separation at a wavelength of 633 nm

where primarily the longer wavelength z polarization reso-

nance would be excited. The figure indicates that there is a

hot spot between the disks for this resonance with fields that

are enhanced by over 102 compared with the isolated disk for

the same wavelength. This enhancement is strongly depend-

ent on disk separation as is apparent from Figure 3d, with a

separation of 12 nm giving an average 〈|E|4〉 (averaged over

one of the inner surfaces in the dimer) that is over 104. This

strong dependence of peak enhancement on disk separation

is similar to what is seen in the SERS experiments,39 except

that in the experiments the surfaces are rough so the separa-

tion giving peak enhancement is 30 nm rather than 12 nm.

The overall enhancement factor in Figure 3d peaks at 2 ×
105, which is not an especially high value for SERS measure-

ments. However these studies are important because they

demonstrate that peak enhancement is not associated with

the smallest disk separation. This is because the dipole reso-

nance shifts to the red as disk separation is decreased, lead-

ing to a detuning from the excitation wavelength for small

separations.

4. FDTD and Related Finite Difference
Methods
Finite difference methods solve Faraday’s law and Ampere’s

law, eqs 13 and 14, in differential form over a grid-based

domain (where field components are defined only at the grid

points) using Taylor expansions for the derivatives.

ε ∂

∂ t
Eb ) ∇ × Hb - Jb (13)

µ ∂

∂ t
Hb )- ∇ × Eb (14)

The most popular discretization is based on Yee’s

algorithm,22,45 known as the FDTD method. In this method, Eb

and Hb are shifted by half-grid points relative to each other,

and central spatial and leapfrog time differences are used for

the derivatives. A simple version of this can be generated for

a 2D system in which the electric field only has x and y com-

ponents, and the magnetic field has a z component. If the time

step is denoted τ, then the following equations are used:

Ex
n+1⁄2 ) Ex

n-1⁄2 + τ
ε [ ∂Hz

n

∂y
- Jx

n]
Ey

n+1⁄2 ) Ey
n-1⁄2 + τ

ε [- ∂Hz
n

∂x
- Jy

n]
Hz

n+1 ) Hz
n - τ

µ [ ∂Ey
n+1⁄2

∂x
-

∂Ex
n+1⁄2

∂y ] (15)

The finite difference methods described, although time-do-

main based, can be used to calculate the frequency domain

spectra of nanoparticles using Fourier transforms.

FDTD methods have been extensively applied to studies of

nanomaterial optical properties.46 As an application of the 2D

FDTD approach, we consider the transmission of light through

a one-dimensional array of rectangular gold bars (actually

wires). The length of each gold bar is fixed at 150 nm with a

thickness of 8 nm. The spacing between the bars is varied

between 5 and 300 nm to study the transition from film-like

to particle-like behavior as the spacing is varied. In Figure 4,

we present transmission probabilities versus wavelength of
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incident light. This shows a gradual evolution in results as

spacing increases. Film-like behavior results in a maximum at

600 nm, corresponding to excitation of propagating surface

plasmons, and a gradual drop-off of transmission at longer

wavelengths (where the film becomes reflecting). Particle-like

behavior leads to a minimum at 850 nm corresponding to

plasmon excitation in each gold rod, with little coupling

between rods. As the particles get closer together, we see a

red-shifted plasmon resonance dip that moves from 850 to

over 1500 nm. These results demonstrate how optical

response can be switched using suitably chosen spacings.

Note that the change in transmission possible in this prob-

lem is nearly 80%, a remarkable result given that the parti-

cles are only 8 nm thick.

The FDTD algorithm in three dimensions is considerably

more demanding than the 2D calculations just presented.

However, parallel implementations are relatively straightfor-

ward, and a number of applications have been presented in

which simulation boxes over a micrometer in size have been

considered.47 Finite difference algorithms other than Yee’s

algorithm are also of interest. For example, in the

Lax-Wendroff method,48 Eb and Hb are updated concurrently,

FIGURE 4. Transmission spectrum for a 1-D array of gold bars with various spacings between bars.

FIGURE 5. Finite element discretization suited to study a cubic nanoparticle. The full mesh is shown on the left, and the interior cubic region
is shown on the right.
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rather than in a leapfrog fashion. One benefit of this scheme

relative to the Yee algorithm is that one-sided differences,

which are unstable in leapfrog schemes, can be used to trun-

cate the domain.

Although powerful, finite difference methods are limited in

their modeling capability due to their grid-based nature.

Geometries must be approximated using a discrete grid, which

results in what is known as the “staircasing” error. In addi-

tion, with normal Cartesian grids it is computationally expen-

sive to model large domains while still resolving fine features

(small grid spacings have to be used everywhere).

5. Finite Element Methods

A class of methods that do not suffer from the geometric mod-

eling limitations of finite-difference methods, and is of partic-

ular interest for solving frequency-domain problems, are finite

element methods (FEM).49 When modeling metallic nanopar-

ticles, FEM is typically used to solve the inhomogeneous vec-

tor wave equation,

∇b × [ 1
µr

∇b × Eb] - k0
2εrEb ) 0. (16)

In FEM, the domain is divided into elements that are suited to

the problem geometry and are often tetrahedral. Within each

element Eb is approximated using a basis function expansion,

Eb ) ∑
j)1

n

Nbjφj (17)

where the sum is over n interpolation points, Nbj are chosen

basis functions, and the φj are unknown coefficients. A solu-

tion to eq 16 is obtained by using the variational principle to

determine φj. To obtain a meaningful solution, Nbj is required

to satisfy Gauss’s law and appropriate boundary conditions on

the surface of all elements. One such set of functions, based

on the Whitney forms50,51 and defined along the edges of ele-

ments, is

Nbj ) lj(�i1∇b�i2 - �i2∇b�i1) (18)

where lj is length of edge j and the �i are the simplex coordi-

nates of node i (where nodes i1 and i2 are the end-points of

edge j). Higher order basis functions can be constructed by

multiplying eq 18 by Lagrange polynomials.52

FEM is ideal for modeling irregular geometries as well as

efficiently simulating large domains containing fine details.

The latter is accomplished by using small elements in regions

where material properties change abruptly and fields are

expected to significantly vary and large elements everywhere

else. Because of this flexibility, problems that typically require

multiple CPUs to solve by other methods can be solved using

FEM on a single machine. To illustrate this, we simulated the

scattering of 600-nm normal incident light (z-directed and

y-polarized) by a 50-nm diameter cubic silver nanoparticle

using both FEM and FDTD. For FDTD 1-nm grid spacings were

used and the simulation was run for 200-fs to obtain accu-

rate Fourier transformed fields. This took just over 8 h to com-

plete using 256 2.6 GHz dual-core processors. For FEM, the

domain was discretized using tetrahedral elements53 and is

shown in Figure 5. The basis functions in eq 17 multiplied by

second-degree Lagrange polynomials were used, and the sim-

ulation took approximately 4 h to complete using a single 3.4

GHz processor. Calculated field profiles from both FDTD and

FEM are shown in Figure 6. Even though the FEM results show

slight artifacts, they agree well with FDTD, and this is tolera-

ble considering the small amount of computing power

required.

6. Conclusion

The abundance of methods and applications that have been

discussed here demonstrate the richness of this field and its

impact on experiments. Moreover, what we have discussed is

only a small sampling of the important work that has been

done and that will be done in the future as more and more

FIGURE 6. Field profiles of scattered light in the xy-plane by a
cubic silver nanoparticle calculated with FDTD (left) and FEM (right):
(a) |Eb|; (b) |Ey|; (c) |Ex|.
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sophisticated nanostructures are designed. Indeed, the empha-

sis in this Account has been on electromagnetics methods that

have been used to describe isolated particles or small clus-

ters, but much of the challenging work currently of interest

involves more complicated nanostructures that combine metal

and other particles, sometimes with thin films, to generate

materials capable of plasmonic, photonic, or excitonic transi-

tions. Fortunately the methods described in this Account give

us powerful tools for treating these problems, sometimes by

combining methods and sometimes by using advances in par-

allel computation to scale the codes so that very large (and

complex) structures can be treated.
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